Tuning quantum electron and phonon transport in two-dimensional materials by strain engineering: a Green's function based study.
نویسندگان
چکیده
Novel two-dimensional (2D) materials show unusual physical properties which combined with strain engineering open up the possibility of new potential device applications in nanoelectronics. In particular, transport properties have been found to be very sensitive to applied strain. In the present work, using a density-functional based tight-binding (DFTB) method in combination with Green's function (GF) approaches, we address the effect of strain engineering of the transport setup (contact-device(scattering)-contact regions) on the electron and phonon transport properties of two-dimensional materials, focusing on hexagonal boron-nitride (hBN), phosphorene, and MoS2 monolayers. Considering unstretched contact regions, we show that the electronic bandgap displays an anomalous behavior and the thermal conductance continuously decreases after increasing the strain level in the scattering region. However, when the whole system (contact and device regions) is homogeneously strained, the bandgap for hBN and MoS2 monolayers decreases, while for phosphorene it first increases and then tends to zero with larger strain levels. Additionally, the thermal conductance shows specific strain dependence for each of the studied 2D materials. These effects can be tuned by modifying the strain level in the stretched contact regions.
منابع مشابه
شبیه سازی اثر بی نظمی و میدان مغناطیسی بر ترابرد کوانتومی نانوساختارهای دو بعدی مدل شده با تقریب تنگابست
In recent years, semiconductor nanostructures have become the model systems of choice for investigation of electrical conduction on short length scales. Quantum transport is studied in a two dimensional electron gas because of the combination of a large Fermi wavelength and large mean free path. In the present work, a numerical method is implemented in order to contribute to the understanding ...
متن کاملPhononics in Low-dimensions: Engineering Phonons in Nanostructures and Graphene
Phonons – quanta of crystal lattice vibrations – reveal themselves in all electrical, thermal and optical phenomena in materials. Nanostructures open exciting opportunities for tuning the phonon energy spectrum and related properties of materials for specific applications. A recent advent of graphene and quasi two-dimensional materials increased the possibilities for controlled modification of ...
متن کاملBias-Induced Optical Absorption of Current Carrying Two-Orbital Quantum Dot with Strong Electron-Phonon Interaction (Polaron Regime)
The one photon absorption (OPA) cross section of a current carrying two-orbital quantum dot (QD) with strong electron-phonon interaction (polaron regime) is considered. Using the self-consistent non-equilibrium Hartree-Fock (HF) approximation, we determine the dependence of OPA cross section on the applied bias voltage, the strength of effective electron-electron interaction, and level spacing ...
متن کاملImpact of Silicon Wafer Orientation on the Performance of Metal Source/Drain MOSFET in Nanoscale Regime: a Numerical Study
A comprehensive study of Schottky barrier MOSFET (SBMOSFET) scaling issue is performed to determine the role of wafer orientation and structural parameters on the performance of this device within Non-equilibrium Green's Function formalism. Quantum confinement increases the effective Schottky barrier height (SBH). (100) orientation provides lower effective Schottky barrier height in compa...
متن کاملاثرات بس ذرهای در مایعات الکترونی ابعاد کم
This review article is about the role of electron-electron interactions in low dimensional systems and its transport properties in nano-structures. It begins with a review of the pair-distribution function theory of electron liquid systems taking into account the electron-electron interactions. We extend the theory for highly correlated system such two- and one-dimensional electron liquids. We...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 19 2 شماره
صفحات -
تاریخ انتشار 2017